On page 1979 in the first paragraph of the section in Solution Algorithm, $E_c = E_a + V_{cen}$. On page 1980, Case C should read $|i_c| < |i_{cell}| < |i_a|$ and Case D should read $|i_a| > |i_{cell}| > |i_c|$. In Table V in the first column, $E_n = -2.4405$ V. In the Acknowledgments, Eltech is in Chardon, Ohio.

In the article “Thermal Desorption and Infrared Studies at Sol-Gel Derived SiO$_2$ Coatings on Si Wafers” by Rolf Sokoll, Hans-Jürgen Tiller, and Thomas Hoyer [This Journal, 138, 2150-2153 (1991)] the acronym TPD for temperature-programmed desorption should have capitalized. On page 2150 in the second column, the second line should read “(v/o) TMOS and 20-40 v/o...” and line 28 should read “4 - 10$^{-3}$ Pa; 4 h.” On page 2151 in Table I, footnote b should apply to “Assignment” and footnote a should be in that column following v_{as} (Si-O-Si). On page 2152, the temperatures in line 15 should be 720 and 710 K. In the right column on page 2152, the sentence beginning on line 17 should read “Between ca. 700 and 800 K the CH$_3$ groups are removed from the film and a pure SiO$_2$ layer results (Fig. 8, curve 4) as shown with sol-gel systems M and V, respectively.” L. C. Bellamy is the author of Ref. (4).

In the article entitled “Dependence of Entropy Change of Single Electrodes on Partial Pressure in Solid Oxide Fuel Cells” by Kiyoshi Kanamura, Shoji Yoshioka, and Zen-ichiro Takehara [This Journal, 138, 2165-2167 (1991)], Fig. 3 on page 2167 should be

\[
\frac{\partial S}{\partial c} = \frac{\partial c}{\partial T} \ln \frac{T}{c} + \frac{\partial c}{\partial P} \ln \frac{P}{c}
\]

In the article “Corrosion Rate Measurement under Cathodic Polarization by Faradaic Rectification” by Rengaswamy Srinivasan and John C. Murphy [This Journal, 138, 2960-2964 (1991)], the correct form of Eq. [12] was used in the calculations and therefore the results in the paper are correct. But the correct statements following Eq. [11] and the correct form of Eq. [12] should be

\[
t_{cor} = \frac{i_{f0} + i_{cp} - i_{a0}(\exp[\delta f_{n1} - \eta_l])}{i_{a0}(\alpha')A'} - i_{a0}(\beta')B'
\]

where $\eta_l = E_i - E_{cor}; \eta_b = E_a - E_{cor}; A' = \exp[-\alpha f_{n1}]; B' = \exp[\beta f_{n1} - \delta f_{n2}].$ and $B' = \exp[\beta f_{n1} - \delta f_{n2}].$